- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Ahmed, Khandakar_Tanvir (2)
-
Ansari, Md_Istiaq (2)
-
Zhang, Wei (2)
-
Cheng, ed., Jianlin (1)
-
Martelli, ed., Pier_Luigi (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract MotivationIntegrating multiple omics datasets can significantly advance our understanding of disease mechanisms, physiology, and treatment responses. However, a major challenge in multi-omics studies is the disparity in sample sizes across different datasets, which can introduce bias and reduce statistical power. To address this issue, we propose a novel framework, OmicsNMF, designed to impute missing omics data and enhance disease phenotype prediction. OmicsNMF integrates Generative Adversarial Networks (GANs) with Non-Negative Matrix Factorization (NMF). NMF is a well-established method for uncovering underlying patterns in omics data, while GANs enhance the imputation process by generating realistic data samples. This synergy aims to more effectively address sample size disparity, thereby improving data integration and prediction accuracy. ResultsFor evaluation, we focused on predicting breast cancer subtypes using the imputed data generated by our proposed framework, OmicsNMF. Our results indicate that OmicsNMF consistently outperforms baseline methods. We further assessed the quality of the imputed data through survival analysis, revealing that the imputed omics profiles provide significant prognostic power for both overall survival and disease-free status. Overall, OmicsNMF effectively leverages GANs and NMF to impute missing samples while preserving key biological features. This approach shows potential for advancing precision oncology by improving data integration and analysis. Availability and implementationSource code is available at: https://github.com/compbiolabucf/OmicsNMF.more » « less
-
Ahmed, Khandakar_Tanvir; Ansari, Md_Istiaq; Zhang, Wei; Martelli, ed., Pier_Luigi (, Bioinformatics)Abstract MotivationThe identification and understanding of drug–target interactions (DTIs) play a pivotal role in the drug discovery and development process. Sequence representations of drugs and proteins in computational model offer advantages such as their widespread availability, easier input quality control, and reduced computational resource requirements. These make them an efficient and accessible tools for various computational biology and drug discovery applications. Many sequence-based DTI prediction methods have been developed over the years. Despite the advancement in methodology, cold start DTI prediction involving unknown drug or protein remains a challenging task, particularly for sequence-based models. Introducing DTI-LM, a novel framework leveraging advanced pretrained language models, we harness their exceptional context-capturing abilities along with neighborhood information to predict DTIs. DTI-LM is specifically designed to rely solely on sequence representations for drugs and proteins, aiming to bridge the gap between warm start and cold start predictions. ResultsLarge-scale experiments on four datasets show that DTI-LM can achieve state-of-the-art performance on DTI predictions. Notably, it excels in overcoming the common challenges faced by sequence-based models in cold start predictions for proteins, yielding impressive results. The incorporation of neighborhood information through a graph attention network further enhances prediction accuracy. Nevertheless, a disparity persists between cold start predictions for proteins and drugs. A detailed examination of DTI-LM reveals that language models exhibit contrasting capabilities in capturing similarities between drugs and proteins. Availability and implementationSource code is available at: https://github.com/compbiolabucf/DTI-LM.more » « less
An official website of the United States government
